

Corporate Presentation

First-in-class small molecules for the treatment of metabolic and inflammatory disorders

June 2021

Forward looking statements

The statements made in this presentation may include forward-looking statements regarding the type 1 diabetes, psoriasis, and other markets, the development and attributes of investigational and marketed products to treat these diseases and other conditions, and the future operations, opportunities or financial performance of vTv Therapeutics Inc.

These forward-looking statements are only estimations based upon the information available to vTv Therapeutics Inc. as of the date of this presentation. Except as required by law, we expressly disclaim any responsibility to publicly update or revise our forward-looking statements, whether as a result of new information, future events or otherwise. Thus, the forward-looking statements herein involve known and unknown risks and uncertainties and other important factors such that actual future operations, opportunities or financial performance may differ materially from these forward-looking statements.

For a more detailed discussion of our risks, see the Risk Factors section in our prospectus filed with the SEC and our other filings with the SEC, including our most recent 2020 Annual Report on Form 10-K.

2

Undue reliance should not be placed on forward-looking statements, which speak only as of the date hereof. All forward-looking statements contained herein are qualified in their entirety by the foregoing cautionary statements.

This presentation is being provided to you for information purposes only. This presentation does not constitute an offer or sale of (or the solicitation of an offer to buy) any securities of vTv Therapeutics Inc. or any of its subsidiaries.

By accepting this presentation, you acknowledge and agree that (i) you will not rely on this presentation for making any investment decision with respect to any securities of vTv Therapeutics Inc. or any of its subsidiaries, and (ii) any investment decision made by you with respect to any such securities will be based solely on a prospectus (or other offering document) relating to such securities (if any), including the information incorporated by reference therein.

Our Focus

We are focused on treating **metabolic and inflammatory disorders** to minimize their long-term complications and improve the lives of patients

Our innovative pipeline of internally discovered **first-in-class small molecules, emphasis on clinical trial execution,** and **strategic partnerships** are the keys to our success

Company Overview

Our People

Steve Holcombe, B Sc President, CEO

35 years experience growing start-up companies

18 years at vTv; founding team member

Negotiated 10 vTv partnerships

Raised \$200 million equity capital

Focused on operational excellence: Assembled teams that moved projects forward on time and on budget

Carmen Valcarce, PhD
Executive Vice President, CSO

30+ years of R&D experience focused on diabetes and metabolic disease

Managed 12+ INDs

Part of the vTv IPO team

Involved in over 50 due diligence and partnership deals

Ran multiple positive clinical studies

+20 patents

7 years at Novo Nordisk

Trained biochemist and molecular biologist focused on mitochondrial metabolism

Rudy Howard, BA CPA Executive Vice President, CFO

20+ years as CFO of 5 publicly held companies, ranging from early stage to \$1B in revenues, and up to 7,000 employees
As CFO, led three companies through IPOs
Raised over \$500M in public markets
Significant role in over 30 M&A transactions
Former partner with PWC

Aaron Burstein, PharmD Senior Vice President, Clinical Development

24+ years clinical research and drug development experience across academia, federal government, large pharma and small biotech companies.

Supported 60+ clinical studies across Phases 1-4

48 peer reviewed scientific publications

Fellowship training in Clinical Neuropharmacology including PK/PD data analysis techniques

Company Overview Pipeline

Indication	Pr	eclinical	Phase I	Phase II	
Type 1 Diabetes (T1D)	ТТРЗ	99 (GKA)			
Psoriasis	НРР	737 (PDE4)			
Cystic Fibrosis Related Dial	betes (CFRD) TTP2	73 (Oral GLP1-R)			
Type 1 Diabetes (T1D) Prev	vention RAG	E			
Under Evaluation to Select	Indication HPPS	3033 (Nrf2)			
Partnered Programs	Preclinical	Phase I	Phase II	Partner / Terr	itory
Type 2 Diabetes (T2D)	TTP273 (Oral GLI	P1-R)		E .	China and other Rim Countries (
Primary Mitochondrial Myopathy	HPP593 (PPAR -δ)			华东医药 Reneo	Worldwide
COPD/Atopic Derm/Psoriasis	HPP737 (PDE4)			NEWSOARA	China and other Countries (excl.
Renal Diseases	HPP971 (Nrf2 Ac	tivator)		恒 翼 生 物 医 药 Anteris Bio	Worldwide
5				Anteris B10	vTv

Data Readouts Expected in 2021

TTP399 (GKA)

Mechanistic Study

Mechanistic study of Diabetic Ketoacidosis (DKA) risk to inform Ph3 study design

Initiation Q1 2021 Readout Q3 2021

HPP737 (PDE4 inhibitor)

Multiple Ascending Dose study

Phase 1 Multiple Ascending Dose clinical study to determine MTD and inform dose selection for POC study

Initiated Q1 2021 Readout Q3 2021

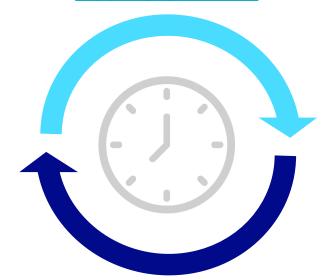
Diabetes

TTP399

Liver-Selective Glucokinase Activator (GKA) as an Adjunctive Treatment to Insulin in T1D

T1D is a Burdensome Disease

People with T1D never get a day off from managing it


It requires constant monitoring of blood glucose levels

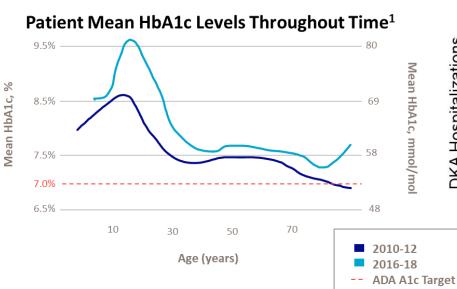
People with T1D must wear a pump or use injections to dose insulin

Risk of daytime hypoglycemia

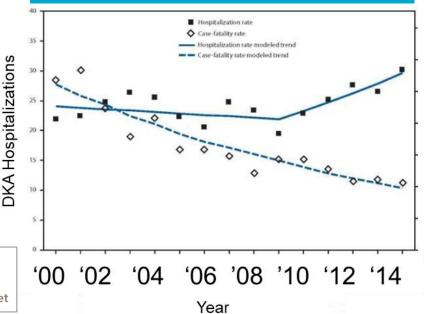
Risk of nighttime hypoglycemia and seizures

It requires constant management, 24 hours a day

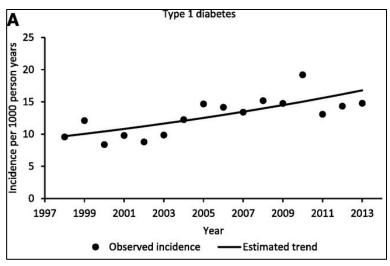
Must count the carbs and account for everything they eat


It is exhausting and has long-term dangerous complications

Clinical Outcomes Continue to Decline Despite New Diabetes Technologies¹


Nearly 80% of people with type 1 diabetes fail to achieve ADA target A1c levels²

Patient Mean HbA1c Levels Throughout Time¹



Life-threatening, short-term complications of poor glycemic control

The incidence of DKA-hospitalization is increasing³

The incidence of hypoglycemiahospitalization is increasing⁴

¹ Foster et al. Diabetes Technology and Therapeutics (2019) <u>21</u>:66-72; DOI: 10.1089/dia.2018.0384

² <u>Diabetes Technol Ther.</u> 2019 Feb;21(2):66-72. doi: 10.1089/dia.2018.0384. Epub 2019 Jan 18

³ Gosmanov et al. Hyperglycemic Crises: Diabetic Ketoacidosis (DKA), And Hyperglycemic Hyperosmolar State (HHS) South Dartmouth (MA): MDText.com, Inc.; 2000

⁴ Zhong et al, Diabetes Care 2017 Dec; 40(12): 1651-1660.

Type 1 Diabetes / TTP399

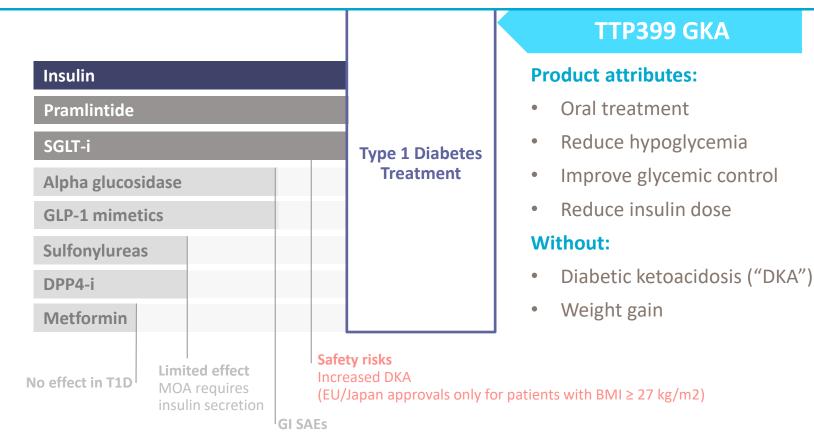
Severe Hypoglycemic Events Result in a Substantial Burden on Patients and Healthcare System*

~7.4 Million Americans with diabetes (T1D and T2D) take insulin, including 1.5M T1D patients¹

36% of US diabetic patients (T1D and T2D) had ≥1 episode of severe hypoglycemia in the last year 2

245,000 Emergency Room visits due to severe hypoglycemia by adults with diabetes (2014)³

\$1.8 Billion in total direct medical costs of hypoglycemic events $(2009)^4$

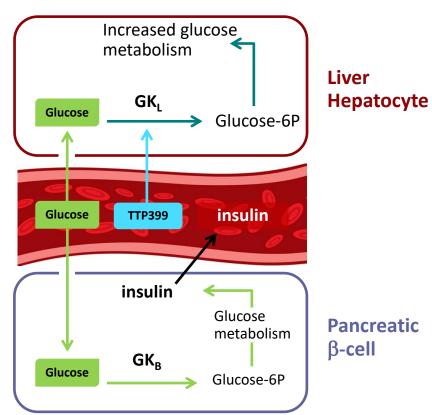

The iNPHORM study (NCT04219514) is one of the first prospective, longitudinal investigations in the world to be conducted in the area of hypoglycemia. It will take place across the United States and involve 12 months of data collection using multiple self-reported, self-administered questionnaires. Results presented at EASD 2020 https://www.uwo.ca/diabetesalliance/img/iNPHORM posters full sized/EASDposter Sept%2023-Large.jps

CDC National Diabetes Statistics Report 2017

Zhao Y. et al. DOI:10.1080/13696998.2016.1178126

Limited Treatment Options for a Significant Patient Population

No approved Oral Therapies for T1D in the US, and Available T2D Treatments have Limited Potential in T1D⁽¹⁾


(1) American Diabetes Association: Diabetes Care 2019; 42 (Supplement 1):S90-S92, https://doi.org/10.2337/dc19-S009.

GKA, a Unique Biological Strategy to Support T1D Patients

Glucokinase facilitates a critical step in sugar metabolism

Glucokinase is the glucose sensor of the body

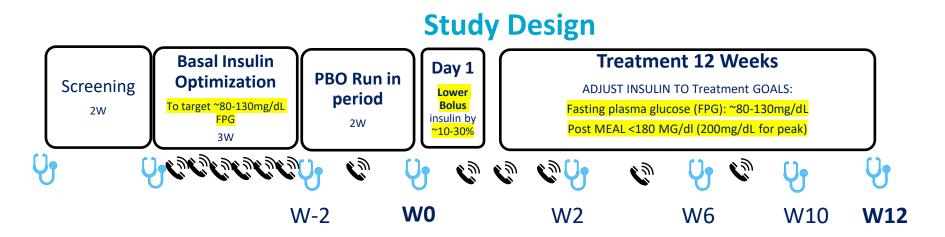
Key role in glucose homeostasis supported by strong genetic evidence

TTP399: A liver selective Glucokinase Activator¹

TTP399 activates GK in the liver and normalizes glycogen storage

TTP399 does not activate GK in the pancreas

TTP399 does not interrupt the interaction between GK and its regulatory protein

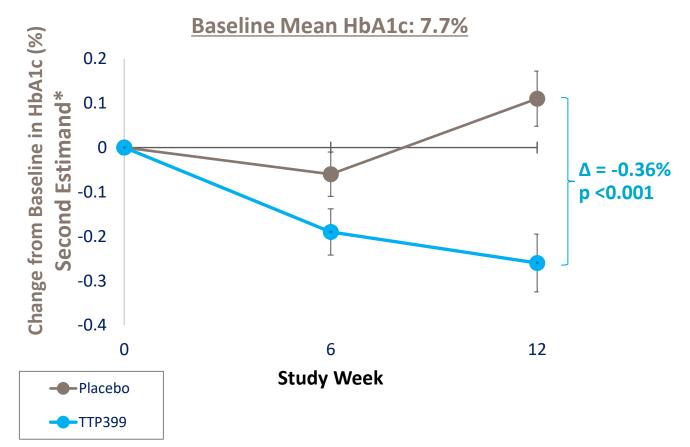

1 Vella A, Freeman J, Dunn I, Keller K, Buse J, Valcarce C. Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Science Translational Medicine 16 Jan 2019

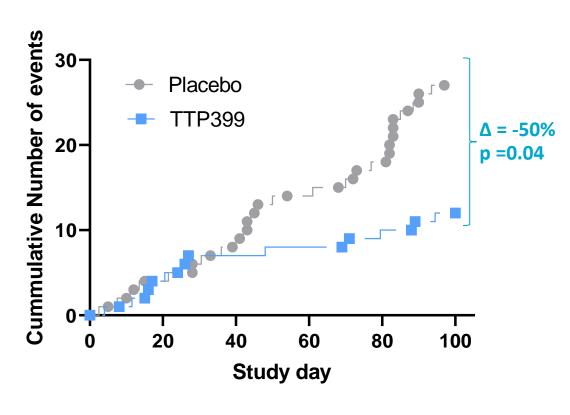
Simplici-T1 – Key Phase 2 Study Results

- Statistically significant reduction in HbA1c under a treat-to-target design (i.e. compared to intensive insulin treatment)
- ~40% reduction in hypoglycemic episodes with TTP399 vs. placebo
- No report of diabetic ketoacidosis, trends towards reduction in ketone events were observed in the TTP399 treated group compared to placebo
- ~2 hour increase in time in range relative to placebo
- Reduced total daily mealtime bolus insulin relative to baseline
- No detrimental safety signals across multiple parameters in TTP399 treated group when compared to placebo, unlike other oral MOAs investigated for T1D

Simplici-T1 — Adaptive Phase 1b/2 Study Trial Design

- Simplici-T1 study designed to explore the safety and efficacy of TTP399, as an oral adjunctive therapy for T1D
- Double-blind Placebo controlled 12 weeks of dosing, 800mg QD or placebo (1:1) in 104 patients with
 T1D
- Treat-to-target design allowed changes in insulin dose <u>after the insulin-optimization period in all participants via frequent PI follow-up</u> to achieve and maintain the pre-specified targets (FPG: ~80-130mg/dL; post meal glucose: <180-200 mg/dL)





Simplici-T1: TTP399 Treated Subjects Achieved Better Glycemic Control while Reducing Hypoglycemic Events

Change in HbA1c

Hypoglycemic Events

^{*}The pre-specified second estimand analysis evaluated the effect on HbA1c for patients without evidence of noncompliance with prescribed treatment who did not administer notable increases of bolus insulin of three or more units. This second estimand analysis was conducted consistent with current regulatory guidance. Data shown for Part 1 and Part 2 combined (n=104).

Klein et al. Diabetes Care, 2(16), 2684 (2021)

Pivotal Study Development Plan Under Breakthrough Therapy Designation*

Q1 2021	Initiated DKA mechanistic study
Q2 2021	 Received Breakthrough Therapy Designation from FDA for the treatment of T1D Partnering with FDA on an efficient development path to registration
Q4 2021/ Q1 2022	 Initiate 6 month pivotal trial followed by 6 mo Open Label Extension Initiate other NDA supporting studies

^{*}Current development plan may change based on continued dialogue with FDA and other stakeholders.

Mechanistic Study of DKA Risk (TTP399-118)

Study Objective: Evaluate effects of TTP399 on ketogenesis during insulinopenia to inform Ph3 study design

Study Design:

- Participants: 20-30 adults with T1D on insulin pumps
- Dosing: TTP399 800mg or placebo once daily for 7 days (randomized 1:1)
- Insulin withdrawal test: on day 7, insulin pumps will be stopped and physically removed at 6 am and serial measurements of plasma glucose and ketones (βhydroxybutyrate) will be collected for 10h

- Study design similar to clinical studies using SGLT2 inhibitors^{1,2}
- Results from similar
 preclinical study using
 TTP355³
 - Decreased ketones in plasma after insulin withdrawal with liver selective GKA compared to placebo

(1) Herring et al, Diabetes Care 2020 https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics 19,618-622, 2017) https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics 19,618-622, 2017) https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics 19,618-622, 2017) https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics 19,618-622, 2017) https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics https://doi.org/10.2337/dc19-2579
(2) Patel et al. Diabetes Technology & Therapeutics <a

(3) https://vtvtherapeutics.com/wp-content/uploads/2020/08/GKA-Poster-Keystone-2017 01182017 final-minipigs.pdf TTP355: liver-selective GKA (first generation)

Initiation: Q1 2021 Readout: Q3 2021

Inflammation

HPP737:

PDE4 Inhibitor as an Oral Treatment of Psoriasis

Inflammation / HPP737 (PDE4 inhibitor)

Program Overview

- PDE4 is a validated target in the treatment of a variety of inflammatory disorders. Targeting PDE4 is a multi-billion dollar market and growing rapidly
- HPP737 is an oral, novel, potent and selective PDE4 inhibitor
- HPP737 exhibits in vitro, in vivo and ex vivo potency on par with or superior to competitor PDE4 inhibitors affording opportunity to potentially demonstrate improved efficacy at lower doses
- HPP737 does not cross the blood-brain barrier
- Expected to reduce incidence of PDE4 associated GI intolerance and CNS side effects
- No significant GI intolerance (i.e. nausea, vomiting, diarrhea) observed in completed Phase 1 clinical studies

Psoriasis

Market Sales* \$19.2B 2027

^{*} Psoriasis market sales in US, Japan, 5EU (France, Germany, Italy, Spain, and UK). Source: Global Data, Plaque Psoriasis Global Drug Forecast and Market Analysis to 2027. Published Dec 2018

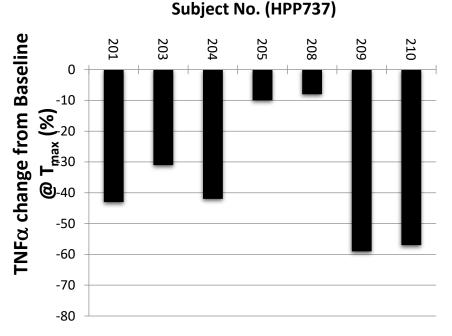
HPP737: in vitro (sRICA model)

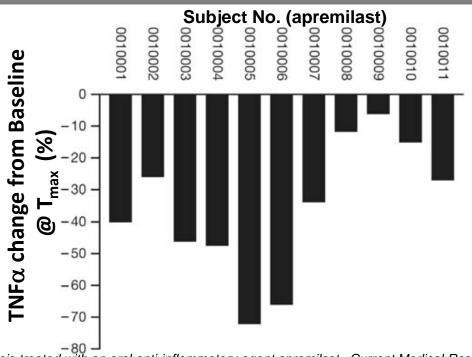
HPP737 10-100x More Potent than Apremilast in Skin Resident Immune Cell Assay (sRICA) Model

	Inhibition (IC ₅₀ nM)						
Compound	TNF-α	GM-CSF	MIP-1a	IL-2	IP-10	IL-17a	
HPP737	3	20	25	4	2	2.4	
Apremilast	100	200	250	120	200	n/a	

sRICA Model

- Th17 model of "psoriatic like inflammation"
- Ex vivo tissue model mimicking the inflammation in skin biopsies from patients with psoriasis
- Culture of normal human skin with inflammatory stimuli that allows for cellular and molecular interactions between stromal and resident immune cells in presence of inflammatory stimuli


HPP737 Shows Differentiated Profile from other PDE4 Inhibitors in Phase 1 Studies in Healthy Volunteers


In completed Single and Multiple Ascending dose studies in healthy volunteers

- No significant treatment related GI intolerance observed (i.e. nausea, vomiting or diarrhea)
- Reduction in TNFα similar to published data with Apremilast* but at ~10x lower drug concentrations

^{*} Gottlieb AB et al. An open-label single-arm pilot study in patients with severe plaque-type psoriasis treated with an oral anti-inflammatory agent apremilast. Current Medical Research and Opinion 2008;24(5):1529–1538

Development Plan*

Q1

Initiated phase 1 MAD dose escalation study in Healthy Volunteers

- > Determine MTD: Demonstrate ability to dose higher without GI side effects
- \triangleright Biomarkers: IL-17A, IL-17F, IL-22 and TNF- α
- Selection of doses for phase 2 study
- **Expected readout Q3 2021**

2H

Initiating Psoriasis phase 2 study

- > 12-week study in patients with moderate to severe plaque psoriasis
- > Primary efficacy outcome: % of participants achieving a 75% improvement (response) in Psoriasis Area and Severity Index (PASI) at Week 12
- > Expected readout 2H 2022

Partnered Development Programs

Creating Value Through Partnerships

Asset	Partner	Territory	Target Indications	Economics for vTv
TTP273 (Oral GLP-1r)	华东医药 HUADONG MEDICINE	China and other Pacific Rim Countries (excl. Japan)	Type 2 Diabetes	Milestones and Royalties Utilization of data to advance development in ROW
HPP737 (PDE4i)	NEWSOARA 恒翼生物医药	China and other Pacific Rim Countries (excl. Japan)	COPD/Atopic Dermatitis/Psoriasis	Milestones and royalties Utilization of data to advance development in ROW
HPP591 (PPAR- δ Agonist Program)	Reneo	Worldwide	Primary Mitochondrial Myopathy, Fatty Acid Oxidation Disorder, McArdle Disease	Equity interest in Reneo Milestones and Royalties
HPP971 (Nrf2 Activator)	Anteris Bio	Worldwide	Renal diseases	Equity interest in Anteris Bio Milestones and Royalties

Thank you

